
Building Linguistically Motivated Building Linguistically Motivated
Speech Speech RecognisersRecognisers with with RegulusRegulus

Manny Rayner
Beth Ann Hockey
Pierrette Bouillon

Regulus Regulus communitycommunity

Johan Bos David Carter
Nikos Chatzichrisafis John Dowding
Dominique Estival Genevieve Gorrell
Kyoko Kanzaki Maria Kaplanidou
Ian Lewin Yukie Nakao
Marianne Santaholma Marianne Starlander

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
� Comparison of Regulus and other methods
� Using Regulus

Recognizer = Recognizer =
Acoustic model + GrammarAcoustic model + Grammar

� (Declarative information in recognizer…)
� Acoustic model describes the structure of

the sounds
– Beyond the scope of this talk…

� We are interested in grammars

The role of grammars in a The role of grammars in a
spoken dialogue systemspoken dialogue system

� Grammars provide both
– Filter on recognition: defines what system can

hear, reduces search
– Defines what semantic structures are associated

with which pieces of language

Standard methods for building Standard methods for building
speech recognition grammarsspeech recognition grammars
� Statistical language models

– Need a lot of training data
– Don’t produce any data structures

� Hand coded context-free grammars (CFGs)
– Labor intensive
– Hard to maintain

Unification grammars (UG)Unification grammars (UG)
� “Parameterised CFGs”
� Example:

– CFG representation
� NP_SG � D_SG, N_SG
� NP_PL � D_PL, N_PL

– UG representation
� NP:[num=X] � D:[num=X], N:[num=X]

Previous work: compilersPrevious work: compilers

� Gemini (Moore, Gawron, Dowding)
– CommandTalk, Personal Satellite Assistant, WITAS…

� EPFL compiler (Chapellier, Rajman et al)
– EPFL directory inquiry system

� HPSG2CFG (Kiefer and Krieger)
– Not used in implemented speech system (?)

� Regulus 1 (Rayner, Hockey, Dowding)
– On/Off House, MedSLT 1, Franco

� Uniance (Bos)
– IBL

Limitations of previous workLimitations of previous work

� Domain-specific unification grammars
– (All systems except Kiefer & Krieger)
– New grammar needed for each domain
– Not easy to port grammars

� (Kiefer and Krieger)
– Can compile general unification grammars
– Unclear whether resulting CFG grammar can

be used in recognizer

The The RegulusRegulus programprogram

� Write a single application-independent unification
grammar

� Derive application-specific unification grammars
using example-based methods and small corpora

� Compile specialized unification grammars into
CFG language models

� Good performance of recognizers on real tasks

Large English
UG

EBL
Specialization

UG to CFG
Compiler

Nuance
Compiler

R E G U L U S

Processing Path:

Application
Specific

UG

GSL
Grammar

Recognizer

N
U
A
N
C
E

The The Regulus Regulus picturepicture

The The Regulus Regulus systemsystem

� Open Source platform compatible with
Nuance recognizer

� Integrated development environment
� Has been used to build several non-trivial

apps
– Clarissa astronaut assistant, MedSLT translator

Key questions about Key questions about RegulusRegulus

� How does it work?
� How does it scale up?
� How does it compare to alternatives?
� How do you use it?

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
– Unification grammar � CFG
– Approximation using grammar specialization
– Scalability

� Comparison of Regulus and other methods
� Using Regulus

Unification grammar Unification grammar �� CFGCFG

� Basic idea
– Exhaustively expand rules
– Filter results to remove useless rules

� Refinements
– Efficient filtering
– Interleaving of expansion and filtering
– Pre-processing of grammar
– Grammar compaction
– Semantics

Exhaustive expansionExhaustive expansion

� Each feature in unification grammar has
defined finite range of values

� Instantiate each feature to each of its
possible values

� Problem: combinatoric explosion

Example unification grammarExample unification grammar

Range of values for num: {sg, pl}

SIGMA:[] � NP:[num=X]
NP:[num=X] � D:[num=X], N:[num=X]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats

Expanded grammarExpanded grammar

SIGMA:[] � NP:[num=sg]
SIGMA:[] � NP:[num=pl]
NP:[num=sg] � D:[num=sg], N:[num=sg]
NP:[num=pl] � D:[num=pl], N:[num=pl]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats

(Normal CFG notation…)(Normal CFG notation…)

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG, N_SG
NP_PL � D_PL, N_PL
D_SG � this
D_PL � these
N_SG � cat
N_PL � cats

FilteringFiltering

� Some expanded rules may be irrelevant
� Top down filtering

– Rules irrelevant because they don’t connect to
the top-level rule

� Bottom up filtering
– Rules irrelevant because they don’t connect to

the lexicon

Example of topExample of top--down filteringdown filtering

Range of values for num: {sg, pl}

SIGMA:[] � NP:[num=sg]
NP:[num=X] � D:[num=X], N:[num=X]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats

Expanded grammarExpanded grammar

SIGMA:[] � NP:[num=sg]
NP:[num=sg] � D:[num=sg], N:[num=sg]
NP:[num=pl] � D:[num=pl], N:[num=pl]
D:[num=sg] � this
D:[num=pl] � these
N:[num=sg] � cat
N:[num=pl] � cats

Filtered grammarFiltered grammar

SIGMA:[] � NP:[num=sg]
NP:[num=sg] � D:[num=sg], N:[num=sg]
D:[num=sg] � this
N:[num=sg] � cat

Example of bottomExample of bottom--up filteringup filtering

Range of values for num: {sg, pl}

SIGMA:[] � NP:[num=X]
NP:[num=X] � D:[num=X], N:[num=X]
D:[num=sg] � this
N:[num=sg] � cat

Expanded grammarExpanded grammar

SIGMA:[] � NP:[num=sg]
SIGMA:[] � NP:[num=pl]
NP:[num=sg] � D:[num=sg], N:[num=sg]
NP:[num=pl] � D:[num=pl], N:[num=pl]
D:[num=sg] � this
N:[num=sg] � cat

Filtered grammarFiltered grammar

SIGMA:[] � NP:[num=sg]
NP:[num=sg] � D:[num=sg], N:[num=sg]
D:[num=sg] � this
N:[num=sg] � cat

Efficient filteringEfficient filtering

� Want filtering time to be linear in #rules
� Top-down filtering is easy

– Just propagate down from the root category

� Bottom-up is less trivial
– Obvious algorithm is quadratic time

LinearLinear--time bottomtime bottom--up filteringup filtering

� Linear-time bottom-up filtering is possible
� Corollary of result by Dowling & Galliers

– Good concise explanation in Russell & Norvig

� Key idea: make bottom-up filtering into a
marker-passing process

� Actually not quite linear in our
implementation … O(n log(n))

BottomBottom--up filtering methodup filtering method

� “Supported non-terminal N”
– Def: can generate at least one string from N
– Base case: there is a lexical entry for N

� “Missing support for rule R”
– Def: # unsupported non-terminals in RHS of R
– Decrement missing support if non-terminal becomes

supported
– Rule is supported if missing support = 0

� Non-terminal on LHS becomes supported

� Algorithm
– Percolate supported non-terminals upwards

ExampleExample

1 SIGMA:[] � NP:[num=sg]
1 SIGMA:[] � NP:[num=pl]
2 NP:[num=sg] � D:[num=sg], N:[num=sg]
2 NP:[num=pl] � D:[num=pl], N:[num=pl]
0 D:[num=sg] � this
0 N:[num=sg] � cat

Black figures show missing support

ExampleExample

1 SIGMA:[] � NP:[num=sg]
1 SIGMA:[] � NP:[num=pl]
0 NP:[num=sg] � D:[num=sg], N:[num=sg]
2 NP:[num=pl] � D:[num=pl], N:[num=pl]
0 D:[num=sg] � this
0 N:[num=sg] � cat

Black figures show missing support

ExampleExample

0 SIGMA:[] � NP:[num=sg]
1 SIGMA:[] � NP:[num=pl]
0 NP:[num=sg] � D:[num=sg], N:[num=sg]
2 NP:[num=pl] � D:[num=pl], N:[num=pl]
0 D:[num=sg] � this
0 N:[num=sg] � cat

Black figures show missing support

Timings for bottomTimings for bottom--up filteringup filtering

0.07 msecs/rule117811

0.06 msecs/rule18880

0.06 msecs/rule4037

0.05 msecs/rule2966

0.06 msecs/rule1132

Time/Rule (msecs)# Rules

Interleaving of expansion and Interleaving of expansion and
filteringfiltering

� #Expanded rules exponential in #features
� May run out of space before we can filter
� Solution: interleave expansion and filtering

– Expand using subset of features
– Filter
– Iterate until all features have been expanded

Importance of interleaved Importance of interleaved
expansion and filteringexpansion and filtering

� Try compiling without interleaving
� Increase number of features in grammar

(exceeded resource limits)40
99.9108621093338
5.310825684936
0.7468202730
0.238877120
0.136441210

Time (secs)
No interleaving

#Rules after
filtering

#Rules before
filtering

#Features

PrePre--processing of grammarsprocessing of grammars

� Can reduce size of expanded CFG grammar
by pre-processing unification grammar

� Two transforms currently used
– Singleton variable elimination
– Binarization

Singleton variable eliminationSingleton variable elimination

� “Singleton variables” can be optimized
� Example: transitive VP rule

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=trans],
NP:[num=ObjNum, gender=Gen]

Expands to 2 x 2 x 2 = 8 CFG rules

ObjNum and Gen are singleton variables

Singleton variable eliminationSingleton variable elimination

Transformed version:

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=trans],
NP:[num=any, gender=any]

NP:[num=any, gender=any] �
NP:[num=Num, gender=Gen]

Expands to 2 + 2 x 2 = 6 CFG rules

BinarizationBinarization

� Rules with many daughters cause problems
– Number of generated CFG rules is exponential

in number of daughters

� Solution: apply a binarization transform
– In binarized grammar, rules have ≤ 2 daughters

BinarizationBinarization

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=ditrans],
NP:[num=IndObjNum],
NP:[num=ObjNum]

��������

VP:[num=SubjNum] �
V:[num=SubjNum, subcat=ditrans],
TMP1:[num1=IndObjNum, num2=ObjNum]

TMP1:[num1=IndObjNum, num2=ObjNum] �
NP:[num=IndObjNum],
NP:[num=ObjNum]

Grammar compactionGrammar compaction

� Can also apply CFG � CFG transforms to
simplify resulting grammar

� Probabilistic training of CFG grammar
works better on smaller grammar
– Fewer rules means fewer parameters to train

� With large grammars, can reduce size of
CFG grammar by over 90%

� Method described in (Dowding et al 2001)

Grammar compactionGrammar compaction

� Three transforms, applied repeatedly until
fixpoint is reached
– “Absorbing”: If non-terminal N occurs as LHS

in just one rule, and RHS is all terminals,
replace N everywhere with RHS

– “Duplicate rules”: Remove duplicated rules
– “Duplicate rule groups”: If the sets of rules for

non-terminals N1 and N2 are the same, replace
N2 everywhere with N1

ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG N_SG
NP_PL � D_PL N_PL
D_SG � the D_SG � some
D_PL � the D_PL � some
N_SG � sheep
N_PL � sheep

ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG N_SG
NP_PL � D_PL N_PL
D_SG � the D_SG � some
D_PL � the D_PL � some
N_SG � sheep (ABSORB)
N_PL � sheep (ABSORB)

ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D_SG sheep
NP_PL � D_PL sheep
D_SG � the D_SG � some (DUPLICATE)
D_PL � the D_PL � some (DUPLICATE)

ExampleExample

SIGMA � NP_SG
SIGMA � NP_PL
NP_SG � D sheep (DUPLICATE)
NP_PL � D sheep (DUPLICATE)
D � the D � some

ExampleExample

SIGMA � NP (DUPLICATE)
SIGMA � NP (DUPLICATE)
NP � D sheep
D � the D � some

ExampleExample

SIGMA � NP
NP � D sheep
D � the D � some

SemanticsSemantics

� Different possible approaches to semantics
� Approach 1(more general)

– Compile plain CFG grammar
– Reparse recognized words with unification

grammar to get semantics
� Approach 2 (more efficient)

– Compile annotated CFG grammar
– Get semantics directly from recognizer

Using recognizer semanticsUsing recognizer semantics

� Grammar Specification Language (GSL)
� Can build structured representations

– Ordered lists
– Attribute-value structures

� Can map restricted unification grammar
semantics into GSL

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
– Unification grammar � CFG
– Approximation using grammar specialization
– Scalability

� Comparison of Regulus and other methods
� Using Regulus

Approximation using grammar Approximation using grammar
specializationspecialization

� Large linguistically motivated grammars
hard to compile
– (Would be underconstrained anyway…)

� Use corpus-based grammar specialization to
extract a reduced domain grammar

� Compile domain grammar into CFG

The general English grammarThe general English grammar

� Loosely based on SRI Core Language
Engine grammar

� ~175 unification grammar rules
� ~75 features
� Core lexicon, ~ 450 words

Overview of coverage Overview of coverage
(clauses)(clauses)

� Clause types: declarative, Y-N questions, WH-
questions, imperatives

� WH-movement of NPs, PPs, ADJPs and ADVPs
� Passives
� Impersonal subjects
� Embedded WH- and Y-N questions
� Relative and subordinate clauses
� Large number of sub-categorization types
� Adverbs

Overview of coverage Overview of coverage
(NPs and (NPs and PPsPPs))

� Conjunction of NPs, PPs, ADJPs and DETs
� Post-modification of NPs by PPs, ADJPs, relative

clauses
� Pronouns
� Possessives
� Bare DETs as NPs
� Complex DETs
� Date, time and number expressions
� NPs as temporal adverbials

Grammars built so farGrammars built so far

� Personal Satellite Assistant
� Home Automation
� Travel Deals
� Medical Speech Translator
� Intelligent Procedure Assistant
� Mobile Agents

Examples of coverage: Examples of coverage:
Personal Satellite Assistant Personal Satellite Assistant

(PSA)(PSA)
� Affirmative
� Go to flight deck
� Mid deck and lower deck
� Measure pressure
� What were oxygen and pressure one minute ago
� When did the temperature reach twenty degrees
� Go to the crew hatch and close it
� Close all three doors

Examples of coverage: Examples of coverage:
Home Automation (HA)Home Automation (HA)

� Is there a tv in the living room
� Which devices are turned on
� Turn on the kitchen light and the stove
� Dim the light to fifty percent
� Thank you

Examples of coverage: Examples of coverage:
Travel Deals (TD)Travel Deals (TD)

� Holidays in paris under two hundred pounds
� I want something leaving from stansted
� In spain during may or june from gatwick
� Is there anything in italy before may tenth
� Give me a winter brochure
� Do you have three star or four star

Examples of coverage: Examples of coverage:
Medical Speech Translator Medical Speech Translator

(MST)(MST)
� Do you often have headaches in the morning?
� Is the pain usually in the front of your head?
� Does the pain spread to your shoulder?
� Does red wine give you headaches?
� Are the headaches relieved by stress removal?
� How severe are the headaches?
� Is the frequency of your headaches increasing?

Examples of coverage: Examples of coverage:
Intelligent Procedure Assistant Intelligent Procedure Assistant

(IPA)(IPA)
� Next step
� Go back
� Go to step three point two
� No I said go to step five
� Set alarm for twelve minutes from now
� Record a voice note on step seven
� Delete voice note on step four point one
� Increase volume
� Say that again

Examples of coverage: Examples of coverage:
Mobile Agents (MA)Mobile Agents (MA)

� Take a picture of me
� Boudreaux follow me now
� Return to the hab
� Start tracking my physiological sensors

Grammar specialization: Grammar specialization:
Explanation Based LearningExplanation Based Learning

� Macro-rule learning
� Corpus-based flattening of parsed examples

to produce “larger” rules
� Learned grammar’s coverage is strict subset

of original grammar’s coverage
� Coverage loss usually not serious

– Specialized grammar often better in practice

Rule derivation using EBLRule derivation using EBL

V
Measure

S

P
at

D
the

N
pressure

N
mid-deck

D
the

NP

NP NP

PP

S �V, NP

NP � D, N, P, D, N

Training example Derived Rules

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
– Unification grammar � CFG
– Approximation using grammar specialization
– Scalability

� Comparison of Regulus and other methods
� Using Regulus

ScalabilityScalability

� How does it scale
– … as general grammar gets bigger?
– … as training set gets bigger?

Scalability with respect to size Scalability with respect to size
of general grammarof general grammar

� General grammar built up by successively
merging grammars for different applications

� Rationally reconstruct versions of general
grammar for increasing numbers of
applications

� Measure performance of PSA recognizers
derived from increasingly large grammars

Data set usedData set used

� Personal Satellite Assistant data set
– Collected in user tests of system
– 10513 utterances (5394 training, 5169 test)
– 38943 words
– 27 speakers

Parameters measuredParameters measured

� Compile-time
– Time to perform grammar specialization
– Time to perform UG � CFG compilation
– Number of nodes in Nuance recognizer package

� Run-time
– Word error rate (WER)
– Proportion of utterances rejected (REJ)
– Word error rate on non-rejected utterances (AWER)
– Recognizer speed as multiple of real-time (xRT)

Sizes of different versions of Sizes of different versions of
general grammargeneral grammar

68145PSA, HA, TD, MST, IPA, MA5
68139PSA, HA, TD, MST, IPA4
64127PSA, HA, TD, MST3
56106PSA, HA, TD2
4674PSA, HA1

#Feats#RulesApplicationsVersion

Scalability Scalability wrt wrt size of general size of general
grammar: compilegrammar: compile--time figurestime figures

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Unification Grammar Version

C
om

p.
 T

im
e

R
eq

ui
re

d
(s

ec
)

EBL

UG2CFG

Scalability Scalability wrt wrt size of general size of general
grammar: size of recognizergrammar: size of recognizer

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

Unification Grammar Version

N
um

be
r

of
 N

od
es

ScalabilityScalability wrtwrt size of general size of general
grammar: rungrammar: run--time figurestime figures

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 3 4 5

Unification Grammar Version

%
E

rr
or

 &
 x

R
T

WER REJ AWER xRT

WER=word error rate

REJ=proportion rejected

AWER=WER on
accepted utterances

xRT=recognition speed
(multiple of real time)

Scalability with respect to size Scalability with respect to size
of training setof training set

� Train specialized grammars for PSA
application

� Increase size of training set used to carry
out grammar specialization

Scalability Scalability wrtwrt size of training size of training
set: compileset: compile--time figurestime figures

0

50

100

150

200

250

300

350

400

450

250 500 1000 2500 5000

No. of Examples

C
om

pi
la

tio
n

Ti
m

e
(s

ec
)

EBL UG2CFG

ScalabilityScalability wrtwrt size of training size of training
set: recognizer size set: recognizer size

0

2000

4000

6000

8000

10000

12000

14000

16000

250 500 1000 2500 5000

No. of Examples

N
o.

 o
f

ScalabilityScalability wrtwrt size of training size of training
set: runset: run--time figurestime figures

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

250 500 1000 2500 5000

No. of Examples

E
rr

or
 R

at
e

- x
R

T

WER REJ AWER xRT

WER=word error rate

REJ=proportion rejected

AWER=WER on
accepted utterances

xRT=recognition speed
(multiple of real time)

Summary of first halfSummary of first half

� Overview
� Compiling unification grammars into

speech recognizers
– Unification grammar � CFG

� Basic idea: exhaustive expansion
� Refinements: interleaving, pre-processing…

– Approximation using grammar specialization
– Scalability

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
� Comparison of REGULUS and other

methods
– Comparison with hand-built grammars
– Comparison with statistical/robust methods

� Using REGULUS

Comparison of specialized Comparison of specialized
versus handversus hand--coded language coded language

modelsmodels
� Mobile Agents data
� Hand-coded grammar heavily optimized

– Most challenging target for comparison
– 60-70 rules, 2 weeks to build

� Specialized grammar done in one day
– Mostly adding application-specific lexical items
– Six grammar rules added

Training and Test materialTraining and Test material

� From September 2002 field test of Mobile
Agents system

� 608 utterances (485 training, 123 test)
� 3535 words
� 8 speakers

Parameters measuredParameters measured

� Word error rate (WER)
� Proportion of utterances rejected (REJ)
� Word error rate on non-rejected utterances

(AWER)
� Recognition speed as multiple of real-time

(xRT)

Comparison of specialized Comparison of specialized
versus handversus hand--coded language coded language

modelsmodels

9.50%
7.50%

3.25%

57.50%

5.49%
2.44% 2.91%

13.74%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

WER REJ AWER xRT

E
rr

or
 R

at
e

--
%

xR
T

Hand-coded Specialized

WER=word error rate

REJ=proportion rejected

AWER=WER on
accepted utterances

xRT=recognition speed
(multiple of real time)

Why is the Why is the specialisedspecialised version version
better?better?

� Specialization process tunes grammar
efficiently
– Faster recognition speed
– Hand-tuning very time-consuming

� General grammar already covers many
marginal constructions
– Low-frequency constructions not always

covered by hand-coded grammar

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
� Comparison of REGULUS and other

methods
– Comparison with hand-built grammars
– Comparison with statistical/robust methods

� Using REGULUS

Comparison with Comparison with
statistical/robust methodsstatistical/robust methods

� Build two versions of a system
� Compare performance
� Try to make comparison as fair as possible

System: Medical speech System: Medical speech
translatortranslator

� Open Source system built using Regulus
– http://sourceforge.net/projects/medslt

� Limited-domain medical speech translation
� Doctor-patient examination domain
� One-way dialogue

– Doctor can abort if recognition is bad
– Patient responds non-verbally

Examples of coverageExamples of coverage

� Do you often have headaches in the morning?
� Is the pain usually in the front of your head?
� Does the pain spread to your shoulder?
� Does red wine give you headaches?
� Are the headaches relieved by stress removal?
� Is the headache ever severe?
� Is the frequency of your headaches increasing?

Regulus Regulus (GLM) version(GLM) version

� Recognizer built using EBL grammar
specialization

� Rule-based interlingual translation
� Regulus-based text generation
� TTS/concatenated wavfile speech output

Robust (SLM) versionRobust (SLM) version

� SLM-based recognizer
� Robust phrase-spotting parser
� Same translation module as in GLM version
� Same generation module as in GLM version
� Same speech output as in GLM version

Methodological issuesMethodological issues

� Comparing a grammar-based recognizer
with an SLM-based recognizer
– Regulus lets us train the grammar-based version

off the same data as the SLM

� Fair evaluation criteria
– Evaluate on task performance, not artificial

“semantic accuracy”

Training and test dataTraining and test data

� Training data
– 450 text utterances written by developers

� Test data
– 524 spoken utterances collected from simulated

use scenarios

ExperimentsExperiments

� Process test data through both versions
� Judge recognition output for abort/accept
� Judge translations for accepted utterances

– Three-point scale: good, ok, bad
– Compare results across three judges

SER and WER in SLM and SER and WER in SLM and
GLM versionsGLM versions

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

WER SER

SLM GLM

Breakdown of examples Breakdown of examples
translated by SLM and GLMtranslated by SLM and GLM

0

50

100

150

200

250

300

Aborted Accepted but No
Translation

Accepted and
Translated

SLM GLM

Quality of translation with Quality of translation with
GLM versionGLM version

0

20

40

60

80

100

120

140

160

180

Judge1 Judge2 Judge3 Average

Good Okay Bad

Quality of translation with SLM Quality of translation with SLM
versionversion

0

20

40

60

80

100

120

140

160

Judge1 Judge2 Judge3 Average

Good Okay Bad

Quality of translation: Quality of translation:
Comparison of GLM and SLM Comparison of GLM and SLM
(translation (translation judgementsjudgements: averages): averages)

0

20

40

60

80

100

120

140

160

GLM SLM

Good Okay Bad

Interpretation of resultsInterpretation of results

� WER much better for SLM version
– SER about the same

� Failed translations much more frequent
� Bad translations much more frequent

– Many more translations all judges agree are bad

Why is the GLM better?Why is the GLM better?

� Robustness doesn’t help very much
– “All or nothing” domain

� SLM version is much less predictable
– Poor user experience

OutlineOutline

� Overview
� Compiling unification grammars into

speech recognizers
� Comparison of REGULUS and other

methods
� Using REGULUS

Speech Translation System Speech Translation System
ArchitectureArchitecture

Recognizer

Playback
or

Synthesis

Source
Representation
to Interlingua

Target
Representation

to
Target Language

Interlingua to
Target

Representation

Spoken Dialogue System Spoken Dialogue System
ArchitectureArchitectureRecognizer

Playback
or

Synthesis

Semantic
Analyzer

Dialogue
Manager

GUI

Output
Manager

RegulusRegulus componentscomponents and and
functionsfunctions

� Development environment
� Regulus � Nuance compiler
� Grammar specializer
� General grammars
� Parser generator
� Generator generator

Toy1

Toy1Specialized

ToySLT

Toy1: Building a recognizerToy1: Building a recognizer

UG to CFG
Compiler

Nuance
Compiler

R E G U L U S

Application
Specific

UG

GSL
Grammar

N
U
A
N
C
E

Recognizer

Grammar ComponentsGrammar Components

LexiconLexicon

Regulus Grammar

Feature
Declarations

Feature
Declarations

Category
Declarations

Category
Declarations

Grammar
Rules

Grammar
Rules

Declarations Rules

Category DeclarationsCategory Declarations

� Format
category(CategorySymbol, [FeatureList]).

� Examples
– Top level category

top_level_category('.MAIN').
category('.MAIN', [gsem]).

– Lexical and phrasal categories
category(yn_question, [sem]).
category(noun, [sem, number, sem_np_type]).

FeaturesFeatures

� Format
– Feature value spaces

feature_value_space(<ValueSpaceId>, <ValueSpace>).

– Features
feature(<FeatName>, <ValueSpaceID>).

� Examples
feature_value_space(number_value, [[sing, plur]]).
feature(number, number_value).

LexiconLexicon

� Format
<CategorySymbol>:<FeatValList> � lex item

� Examples
noun:[sem=[[device, light]],

sem_np_type=switchable\/dimmable,
number=sing] --> light.

verb:[sem=[[action, switch]], vform=imperative,
vtype=switch, number=sing,
obj_sem_np_type=switchable] --> switch.

Grammar rulesGrammar rules

� Format
Category � List of categories and/or lexical items

� Examples
yn_question:[sem=concat([[type, query]],concat(Verb,

concat(OnOff, Np)))] -->
verb:[sem=Verb, vform=finite, vtype=be, number=N,
obj_sem_np_type=n],
np:[sem=Np, number=N, sem_np_type=switchable],
onoff:[sem=OnOff].

Development environmentDevelopment environment

� Key commands for Toy1
– HELP
– LOAD (Load current Regulus grammar in

DCG and left-corner form)
– NUANCE (Compile current Regulus grammar

into Nuance GSL form)

Toy1: Building RecognizerToy1: Building Recognizer

� UG � GSL in development environment
� UG � GSL using make

– Alternative to doing it in the development
environment

� Nuance compile

Spoken Dialogue System Spoken Dialogue System
ArchitectureArchitectureRecognizer

Playback
or

Synthesis

Semantic
Analyzer

Dialogue
Manager

GUI

Output
Manager

Integrating with an applicationIntegrating with an application

� Toy1 application
– Uses Regulus speech server
– Minimal implementation of

� Semantic Analysis
� Dialogue Manager
� Output Manager

– Vocalizer TTS
– Command line interface

Using theUsing the Regulus Regulus
SpeechServerSpeechServer

� Recognition
– Sends back Nuance results in same form as

Regulus grammar

� Speech output
– Sends request for TTS or for playing recorded

wavfiles

Semantic AnalysisSemantic Analysis

Recogniser representation: [[type,
command],[action,switch],[onoff,on],
[device,light],[location,kitchen]]

DM representation:
[command,device(light,kitchen,on,100)].

Language oriented
semantics

Application oriented
semantics

Dialogue ManagerDialogue Manager

initial_state([
device(light, kitchen, off, 0),
device(light, living_room,
off, 0),
device(fan, kitchen, off,
0)]).

+
[command,device(light,

kitchen,on,100)]

Context
+

Dialogue Move

Context
+

DM Response

new_state([
device(light, kitchen, on, 100),
device(light, living_room, off,
0),
device(fan, kitchen, off, 0)]).

+
device(light, kitchen, on, 100)

Output ManagerOutput Manager

� DCG Template Generation

Abstract
Response

Concrete
Response

device(light,kitchen,on,100)

"the light in the kitchen is
on"

Toy1Specialized: Toy1Specialized:
EBL specializationEBL specialization

General English
UG

EBL
Specialization

UG to CFG
Compiler

Nuance
Compiler

R E G U L U S

Application
Specific

UG

GSL
Grammar

N
U
A
N
C
E

Recognizer

Specialization resourcesSpecialization resources

� General English Grammar
� Training Corpus
� Domain Specific Lexicon

General English Grammar (1)General English Grammar (1)
� Features: vform, agr, nform, sem_n_type,

obj_n_type …

feature_value_space(agr_vals, [[1, 2, 3], [sing,
plur]]).
feature_value_space(vforms, [[base, imperative,
finite, ing, en, to, none]]).
…
feature(vform, vforms).
feature(agr, agr_vals).
…

General English Grammar(2)General English Grammar(2)
� Lexicon: on, the

p:[sem= @prep_sem(on_date), sem_pp_type=date,
obj_sem_n_type=date] --> on.

d:[sem=the_sing,
agr=sing,wh=n,det_type=def,def=y,prenumber=n] -->
the.

d:[sem=the_plur,
agr=plur,wh=n,det_type=def,def=y,prenumber=y] -->
the.

General English GrammarGeneral English Grammar
� Grammar Rules: vp_v_p_np, np_d_n …

vp:[sem= @vp_v_np_p_sem(Verb, NP, P),
@vbar_feats_for_vp(Feats),
takes_post_mods=y,
gapsin=GIn, gapsout=GOut, elliptical_v=n] -->

vbar:[sem=Verb, subcat=nx0vplnx1,
@vbar_feats_for_vp(Feats),
obj_sem_n_type=ObjSem, obj_def=Def, obj_syn_type=ObjSynType,
sem_p_type=PSem, elliptical_v=n],

p:[sem=P, sem_p_type=PSem],
np:[sem=NP, wh=n, nform=normal, sem_n_type=ObjSem,

syn_type=ObjSynType, def=Def, takes_post_mods=n,
@takes_no_pps, gapsin=GIn, gapsout=GOut, case=nonsubj,
pronoun=n].

Training CorpusTraining Corpus

� sent('switch on the light').
� sent('switch on the light in the kitchen').
� sent('switch the fan off').
� sent('dim the light in the living room').
� sent('is the light switched on').
� sent('is the light in the kitchen switched

off').

Development environmentDevelopment environment

� Additional commands for Toy1Specialised
� EBL_LOAD (Load current specialised Regulus grammar in

DCG and left-corner form)
� EBL_TREEBANK (Parse all sentences in current EBL

training set into treebank form)
� EBL_TRAIN (Do EBL training on current treebank)
� EBL_POSTPROCESS (Postprocess results of EBL training

into specialised Regulus grammar)
� EBL_NUANCE (Compile current specialised Regulus

grammar into Nuance GSL form)
� EBL (Do all EBL processing: equivalent to LOAD,

EBL_TREEBANK, EBL_TRAIN, EBL_POSTPROCESS,
EBL_NUANCE)

Toy1Specialised: change Toy1Specialised: change
corpus = change coveragecorpus = change coverage

� With EBL, coverage can be changed by
adding or deleting examples from the
training corpus

� Doesn’t require linguistic expertise

Changing coverage: ExampleChanging coverage: Example

� Edit /Toy1Specialized/corpora/toy1_corpus.pl
� Development Environment-- “EBL” command

does:
– LOAD
– EBL_TREEBANK
– EBL_TRAIN
– EBL_POSTPROCESS
– EBL_NUANCE

ToySLTToySLT: Translation example: Translation example

� Recognizer constructed with Regulus
� Connect to translation application
� Regulus based generation

Speech Translation System Speech Translation System
ArchitectureArchitecture

Recognizer

Playback
or

Synthesis

Source
Representation
to Interlingua

Target
Representation

to
Target Language

Interlingua to
Target

Representation

Development environmentDevelopment environment

� Additional commands for ToySLT
� LOAD_TRANSLATE (Load translation-related files)
� TRANSLATE (Do translation-style processing on input

sentences)
� INTERLINGUA (Perform translation through interlingua)
� NORMAL_PROCESSING (Do normal processing on input

sentences)
� LOAD_GENERATION (Compile and load current generator

grammar)
� GENERATION (Generate from parsed input sentences)

Integrating an applicationIntegrating an application

� ToySLT application
– Uses Regulus Speech Server
– Minimal translation application

� Source Representation to Interlingua
� Interlingua to Target Representation
� Target Representation to Target Language Using

Regulus Generation

– Vocalizer TTS

Source Representation to Source Representation to
InterlinguaInterlingua

[[utterance_type,imp],[tense,
imperative],[pronoun,you],[action,
switch],[spec,the_sing],[device,
light],[prep,off]]

[[action,switch_off],[device,light],
[type,command]].

Recogniser
Representation

Interlingua
Representation

Interlingua to Target Interlingua to Target
RepresentationRepresentation

[[action,switch_off],[device,

light],[type,command]].

[[action,éteindre],[device,lampe],

[type,command]].

Interlingua
Representation

Target
Representation

Target Representation to Target Representation to
Target Language Target Language

� Regulus Generation:
– Generator generator compiles regulus grammar

into DCG optimized for generation

[[action,éteindre],[device,lampe],
[type,command]].

Target words: "éteignez la lampe"

Target Representation Target Words

The Open Source The Open Source Regulus Regulus
projectproject

� Where to find it
� Licensing terms
� Platforms/requirements
� Documentation and examples
� Installation

Where to find Where to find RegulusRegulus

� SourceForge www.sf.net
� Regulus Project Summary Page

http://sourceforge.net/projects/regulus/
– Stable releases available for download
– Link for browsing the cvs repository

� CVS repository
– Can check out current development version

Licensing termsLicensing terms

� Lesser GNU Public License (LGPL)
� Open Source license, BUT …
� … can incorporate Regulus into software

products without these products becoming
Open Source
– Different from GLP license

Platforms/requirementsPlatforms/requirements

� Windows 2000/XP, SunOS/Solaris
– Cygwin recommended if using Windows

� SICStus Prolog version 3.10 or newer
� Nuance 7.0 or newer
� 256 MB or more
� 1 GHz or more recommended

Documentation and examplesDocumentation and examples

� Documentation (in HTML):
/Regulus/doc/RegulusDoc.htm

� Example grammars/systems:
/Regulus/Examples

� Toy1
� Toy1Specialised
� ToySLT
� PSA

InstallationInstallation

� Unpack zipfile
� Set environment variables
� Install other software if necessary

– SICStus Prolog
– Nuance
– Cygwin

Summary and conclusions Summary and conclusions

� Can derive recognizers for multiple applications
from one general grammar
– Faster development times
– More reusable

� Good scalability properties
� Competitive with

– Hand-coded grammars
– Robust/statistical methods

� Available on Open Source platform
�� Regulus Regulus Book 2005Book 2005

